

A Low-Cost Teaching & Research Platform Based on Xilinx RFSoC Technology and the PYNQ Framework INTERNATIONAL SYMPOSIUM ON FIELD-PROGRAMMABLE GATE ARRAYS TUTORIAL 28th February 2021

RFSoC 2x2 Demonstrations & Edu Support & SDR Design Notebooks

Presenter Bob Stewart University of Strathclyde, XUP Partner

Software Defined Radio with the RFSoC ('GHz Sampling')

(A DSP Engineers wishful thinking from 1997...)

RFSoC 2x2 – Scanning the RF Spectrum

In this section we will run **live** on the RFSoC 2x2:

- The **Spectrum Analyser** comes on the base overlay ready to run!
- We first set up the RFSoC 2x2 with just a low cost wideband antenna (\$2)
- Next we will 'live' scan/view the RF spectrum from 90 MHz to 4 GHz
- We can identify some **spectral characteristics** and identify signal types
- We will add a single stage of low pass anti-alias filtering front end stages
- Next we show how add in simple wideband low noise amplifier stage
- And use of the frequency planner will be demonstrated
- We can **receive signals** in the 2nd Order Nyquist zone (WiFi example)

Some of the RF Spectrum (UK): 100 MHz to 1.7 GHz

E XILINX.

Some of the RF Spectrum (UK): 1.8 GHz to 32 GHz

Open the Box and Getting Started (...fast!)

In the Box ...

- RFSoC 2x2 + cables + power supply
- SMA cable for loopback test (RF DAC to RF ADC)

Useful Low Cost Add-ons for RF Receiving:

- Simple wideband SMA connector antenna(s)
- Wideband low noise ampifiers
- Selection of SMA in-line filters
- Selection of SMA in line dB attenuators

Loopback – Instant RF Signal Tx and Rx Setup

Connect output of RF DAC-0 to input of RF ADC-0

Connect output of RF DAC-1 to input of RF ADC-1

A Few Components More ... 2x Amplifiers, 2 x Antennas

RF ADC and RF DAC in 1st and 2nd Nyquist Zones

Using 4.096 Gsps/GHz sampling, analogue signals present in the range 0 to 2GHz (i.e. the 1st Nyquist Zone) can be '*traditionally*' digitised in the conventional manner. An analogue anti-alias filter attenuates frequencies above 2GHz.

RF ADC and RF DAC in 1st and 2nd Nyquist Zones

 Signals present in the 2nd Nyquist Zone can also be captured (by exploiting aliasing (with an appropriate bandpass filter first removes any components present at other frequencies!)

XUP Edu Notebooks - Wireless Comms / SDR Design

Fundamentals:

- Sampling and Quantisation
- Frequency Spectrum
- Baseband Modulation
- Digital Filters
- Modulation and Demodulation
- RFSoC Architecture Introduction

Advanced:

- OFDM Transmit and Receive (1024 QAM)
- Machine Learning (Modulation Classification)

University of Strath

12

XUP Overlay Demonstrators - Wireless Comms

- XUP RFSoC 2x2 includes (Ref Designs):
- Spectrum Analyser
- OFDM RF Transmitter and Receiver
- QPSK RF Transmitter and Receiver
- BPSK RF Transmitter and Receiver
- AGC Automatic Gain Control Design

PYNQ Spectrum Analyzer – Ready to Run Instantly!

- A Jupyter Dashboard:
- Spectrum Plot
- Spectrogram
- Centre Frequency Selection
- Decimation Control
- Programmable Window
- Dual-Channel (RFSoC2x2)
- Quad-Channel (ZCU111)

Under the Hood: **DSP Design with Mathworks' HDL Coder**

- Using Mathworks' HDL Coder in Simulink
 - Enables Model Based Design
 - Large library of prebuilt DSP/HDL blocks
- Using Xilinx System Generator in Simulink
 - Leverage Xilinx IP and Cores
- Easy to integrate into a PYNQ design
 - IP Core Generation
 - Auto Infer AXI Interfaces
- Memory Interface Simulation
 - Supports data transfer modelling with external memory
 - Suitable for FFT frame transfers

MathWorks[®]

SDR Design : A Flexible Decimator in System Generator

A Cascade of Half-Band Filters

© Copyright 2021 Xilinx

E XILINX.

Channel Hierarchy: Spectrum Analyzer

EXILINX.

BPSK Transmitter System Generator

Creating Overlays for RFSoC 2x2

The Receiver Frequency Planner

The Transmitter Frequency Planner

The Digital Up Converter Frequency Planner

The Digital Down Converter Frequency Planner

XILINX.

Thank You

© Copyright 2021 Xilinx